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One analytical solution of a diffusion equation
when diffusivity is a function of time and space

Hiroshi MATSUURA**

An analytical solution for a diffusion equation with a decay term when the diffusion coefficient
is a function of time and space is obtained.
The diffusion coefficient increases linearly from one boundary to a certain distance from that
boundary,and it becomes independent of space beyond that point.The diffusion coefficient also
linearly increases with time from t=0, but it becomes independent of time after a certain period
has passed. The solution is obtained by the method of eigenfunction expansion and the original
problem of solving a partial differential equation is transformed into a problem of solving an

integral equation with a single variable. This integral equation is solved numerically.
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1 Introduction
Due to the development of computers, it becomes
fairly common for scientists to solve differential
equations numerically in recent years. Analytical
solutions are not necessarily always available and
even if they are obtained, forms of solutions may
be too complicated to be useful. Nevertheless, it is
generally true that analytical solutions give us
some useful information regarding the natures of
those solutions such as their dependencies on pa-
rameters without performing extensive computa-
tions. It also is true that, in many cases,numerical
evaluations of analytical solutions require much
less computational resources and programming ef-
forts. The solution described here was originally ob-
tained for the author’s research related to a
dispersion problem of the larvae of southern bluefin
tuna (Matsuura et al., 1997)”. In Matsuura et al.
(1997)", only the basic equations and solutions are
shown ; however,the solution may have some other
applications as well and some details are described

here.

2 Equations
The equation of one dimensional diffusion treated
here is
oC oC
ot tu or

where, C is the concentration, u the advection speed

ﬁ(K%%)‘(xC (1)

which is a constant, ¢ the time, K the horizontal
eddy dlffusmn coefficient normal to the boundary
and o is the decay factor. Here, only the diffusion
in y direction is considered. The advection in x di-
rection (second term of left hand side) is not essen-
tial if it is a constant for the case such as above in
which diffusion in x direction is not considered.
Nevertheless, for the sake of consistency with the
original paper, it is included here. In the following
text, a is taken as a constant or the function of
time alone. The diffusion coefficient, K, is a func-
tion of time and space and
=kty for 0<y<Land 0<¢t<to
K=k tL for L<y<Mand 0<¢t<¢to
K= k toy for 0<y<Land to<t
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K= k toL=Constant

for L<y< M and to<t

(2)
where x 1is a constant, L. the distance from one
side of a boundary where the effect of that bound-
ary vanishes and M is the width of the domain.
Note that K is continuous at ¢t=to and y=L. This
form of K reproduces linear increase of the diffu-
sion coefficient in time during initial period as ob-
served elsewhere (Poulain and Niller?, 1989 ;
Matsuura et al., 1997°) and linear increase of the
component of diffusion coefficient normal to the
coast (boundary) near the coast (Davis, 1985)%. No
flux condition (K 6 C/ 8 y=0) is applied at both
boundaries ; 1. e. at y=0 and at y=M. As a
matching condition,both C and K 8 C/ 3y are con-

tinuous at y=L.

The solution of (1) for the observer moving with

an advection speed u, whose position is x=ut, is

C = dr+ {~——
K‘f @ ar ,,Zl Jo(2yA,L)
‘/O‘t Zpedn(rz—tz)/zdf ¢”}]

for 0<y<Land 0<t<to

_ (R KL ot 1
C=e == [T dero

chr,.(rZ—tZ)/sz

f Co dy+ Z {[— 2KL. fotzpe

2 —xLy¥2 M
+me 7 ‘f; Co On dy]CDn}]

for L<y<Mand 0<t<to
C=elHie®g dit+a,+ ) {——r—e
f P ’ ,,Zl jo(wan
‘ft‘otpefc)l,,(rfl)dz__i_aneffcln(,_,o)]¢”}]

for 0 <y<L and to <t
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for L<y<Mand to<t (3)

where

¢, = Jo(242,y)

®n = cos {7, (y—L)} 7, = (

nw )z
M—-L

a(,:fc‘f(;mzp dar

t, 2_
f"m ran(c to)/zdz_

@ ]o(2v AnL

- KL t 1 M
bo——M_L_f; rpdr+M LJ; Co dy
_ 2L pt g 2ide
b, ML e drt
2 A
+me nto j; Co On dy,

A., an n-th eigenvalue which satisfies o

(2yAnL) =0, Jo the Bessel function of order of 0
and JI is the Bessel function of order of 1. Co is
the initial distribution of C and is assumed to be
zero for 0 <y < L. This assumption was necessary
in the original work (Matsuura et al, 1997)". The
effect of «, if it is a positive constant value such
as in the case of radio active decay, is that the
concentration would decrease exponentially with the

~! itself represents

elapsed time and the value of «
the time scale of the reduction of C. This solution
is obtained by the method of eigenfuction ( $7 and

®n) expansion. Since diffusion coefficient, K, be-
comes 0 at y=0, no flux condition at that bound-
ary does not guarantee 4 C/ 8 y=0 at y=0 while
0C/ 0y is 0 at y=M. In the process of obtaining
the eigenfunction for 0 <y < L, change of vari-
able, 2@— > £, was used. After this transfor-

mation, original Sturm-Liouville problem,
d
( ¢)‘*M¢m y¢n:0

aty=0and y=1L
becomes Bessell’s differential equation with homo-
geneous boundary conditions.Following relations are

also used to obtain (3)

S onay = L 1@ anl),

J;LCDn dy =10

These relations may be obtained directly from
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original Sturm-Liouville equations without perform-
ing change of variable. The terms with C, can be
simplified if gaussian distribution is selected for

Co. In that case, with the conditions that ‘f;MC

dy=1 (unit volume) and half amplitude width is

2W, C is,using the contour integration,

_ e—r(rwz/[\/g{l—%[eTfC(\/;

(£—%))+ erfe(Nrap1}]

1 1
where #=y—L, L= M—L,r = —Wln(?), %

the position of the center of the distribution meas-
ured from L, and erfc is the complementary error
function. Note that the assumtion is Co=0 for

0 <y<L.If Wis small enough relative to <, the

denominator may be approximated by |,/ % . From

this G,
fLM Co @, dy = o U cos(V7. %)
Using aforementioned eigenfunctions, solution
shown above is expressed as a function of P, which

is proportional to the flux at y=L and defined as

¢, 4y OC

= e(‘f(;ad )Elyfll

It is noted here that all the modes are connected

through this function. This is because eigenfunc-

tions for 0 <y < L and for L <y< M are dif-

ferent and thus flux at the boundary must be

decomposed into each mode in different ways in
each domain at the boundary.

From the matching condition, a function P satis-

fies

oo

kY ([ e gy 2y

n=1 M L n=1
{f [Zp rcL‘V,.(r tZ)/z:}d }+ f ‘LZ) dr
_ 2
N M-L ,,Zl

(o i ‘f;M Co On dy} for 0 <t < t,
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xln(r t) Z’CL <
K"ZI{[IP d +M LnZI

M
Lot de

_ {b0+ Z (bneﬂcu,‘(tfto))} 7{a0+

n=1

{J::l:peer,,(rft)]dT} + A’;

oo

Z (L —a (1))

a=1 Jo(24A,L)

for t, <t (4)
Inspection of (4) reveals that the unknown function

P is included in the integration of the form,

L p(0Q(Ddr (5)
where @ 1s a known function. Thus, original prob-
lem of solving a partial differential equation be-
comes a problem solving an integral equation of P.
We approximate above integration as

L p(@Q(Ddr = At{p 1121 QT2 s +

P @Iz in + AP L2 QISY

where @ |22%_,, indicates average of @ between ¢ =
t and t-At
Appling (6) to (4) yields,

p(ﬂAt)[ Z {%[l_e*xikAtz(Zn~1)/2:|}+
k=1

k

2 | - 2(gp—
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2
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Z [,1 Z {p((n— ])At)e’“kA“(Zn /2
k j=

k=1

[1 _ fmlkAtz(Z(n—j)Al)/Zj 11—

i —kLyAt%(2n—5)/2
M 2 kz [ . JZl{p((n —i)A)e

[ __e—/ch,‘AtZ(z(nﬂ)ﬂ)/z] 11—

S LL Y p((n—DAD 2= —1)]

i=1

(7)
where p(nAt) =p [I2700
Using (7), we can calculate P progressively with the
condition that P(0)=0 (No flux at t=0). This ini-

tial condition was valid for the case used in
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original work (Matsuura et al, 1997)" within compu-
tational accuracy. Note that At must be small
enough for the approximation (6) be valid.
Appropriate At may be chosen by considering the
time scale of Q which depends on the mode. The
formula for £<t is similar to (7) and I omit it here.

Equations (3) and (4) indicate effect of the decay
factor can be included posteori as long as it is a
constant or a function of time alone. For example,
instead of choosing a constant, decaying rate may
be modeled as a function of time such as a« =f +
e exp (—®t) for an application to a biological
problem. By this formulation, decaying rate is £
+ ¢ at t=0 but approaches to B exponentially as
time increases. The modification of the solution for
this form of decaying rate from the constant decay-
substitute exp (— B¢+
e/ 0 exp (—0O¢t)) into the first exponential terms

ing rate is rather trivial ;

of the solutions.

3 Result

Solution was computed for the case when M is I
700km, L 100km, to 150 hours, « toL 3.6 X10°nf?, s
and W is 50km as a standard case. These values are
chosen in Matsuura et al. (1997)" based on observa-
tions of tracks of drifting buoys.

We can approximate (7) by truncating it at cer-
tain mode since the contribution from higher mode
(larger k) decreases as mode number increases (be-
cause both A: and 7. increase).Although I have
computed up to 200th mode,test computation with
lesser terms indicates 200 modes are more than
enough. However, [ did not pursue any more test to
get minimun terms necessary to compute (7) with
reasonable accuracy provided that such a trial
would take too much time since the computers con-
venient to use at that time were personal computers
with Pentium (75 Mhz) and PowerPc 604 (150Mhz)
Cpus. Note that if the initial distribution is highly
concentrated, larger number of terms are necessary
to reproduce it. In the extreme case such as the case
when initial distribution becomes a delta function,
infinite number of terms are required.l terminated

summation with j as an index (integration in time)
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in the third term of right hand side of (7) to reduce

computational time, if the condition

m—1
. —e % n= /2 ks 2= —1)/2
]_‘:2.1 {p((n—7)At)e [1—e 1}
2((m—PADe ~ A% (2m - /)/2[1 _evnka?(z(m—j)—l)/z]
> 1 X10%

continues successively for 20 times. I used double

precision for all of the computation and 15 is the
approximate significant digit for the double preci-
sion (Technically, it is possible to have much larger
significant digit by dividing numbers into several
segments.). Note that contributions to this summa-
tion from terms with larger j are generally smaller

T
AT D2 Qame measure was

due to the term, e
taken to compute the fourth term of the right hand
side of (7). The time step was 10 minites for
0<¢t<t, and 20 minites for ¢, < ¢.

The method used here (method of eigenfunction
expansion) does not allow term by term differentia-
tion in term of y but it does allow term by term

integration in term of y which means it is not nec-

essary to compute C to evaluate JO‘LCdy for a con-

stant [. Therefore, I calculated ‘j(;l ¢ dy prior to
the computation of (4), and then calculated P, C (to
test the results) and fol C dy simultaneously since

(7) includes almost all the terms necessary to com-
pute these values.

Figure 1 shows the time series of C integrated
from y=0 to y=10km for the standard case ((1i),
thick line), for the case dispersion coefficient is 10
time larger ((ii), solid line with solid circles), for
the case dispersion is half of the standard case
((iii), dash line), and for the case when the width
of the half amplitude point is 200km with the stan-
dard value of dispersion coefficient ((iv ), fine
line), respectively. For the purpose of comparison,
the result for the case when dispersion coefficient is
constant in space and time is also shown in this
figure as a dot line (v ). The decay factor, «, is
set to 0 for all of the cases. Comparison between
case (1) and (v ) shows there is a considerable
difference of accumulated concentration near the

boundary. Case (iv) represents the case when initial
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Fig. 1 (a) : Concentration integrated from 10km off-

shore to the coast as a function of time for
an observer moving with an advection speed
for the standard case (( i) : solid curve), for
the case dispersion coefficient is 10 time
larger ((ii) ;solid line with solid circles),for
the case dispersion is half of the standard
case ((iii), dash line),and for the case when
the width of the half amplitude point is 200
km with the standard value of dispersion coef-
ficient ((iv) ; fine line), respectively. For the
case when dispersion coefficient is constant
is shown as dot line (v ).

distribution is “broader” than the standard case.
Case (ii) shows that concentration start decreasing
at about 23days. This is caused by the existence of
the boundary at y=0 and beyond of that y posi-
tion, particles can not be dispersed. The final value,
when the concentration becomes uniform is about
0.0058, and all the cases shown here overshoot this

value.

4 Conclusion

An analytical solution of a diffusion equation
with a decay term when diffusion coefficient is a
function of time and space is obtained.The diffu-
sion coefficient has a form that it increases linearly
in time during initial period, and, within a certain
distance from one boundary, it also increases line-
arly as the distance increases from that boundary.

The solution is obtained by the method of
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eigenfunction expansion and it transformed an
original problem of solving a partial differential
equation into a problem of solving an integral
equation. It shows that flux term at the boundary
between two domains connects all the modes. The
solution is evaluated by numerically solving this in-
tegral equation and compared with the case when
diffusion coefficient is a constant. They indicate
there is a considerable difference of accumulated
concentration near the boundary for the values of

parameters chosen here.
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